Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Front Microbiol ; 12: 644089, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936002

RESUMO

Ethanol production from sugarcane is a key renewable fuel industry in Brazil. Major drivers of this alcoholic fermentation are Saccharomyces cerevisiae strains that originally were contaminants to the system and yet prevail in the industrial process. Here we present newly sequenced genomes (using Illumina short-read and PacBio long-read data) of two monosporic isolates (H3 and H4) of the S. cerevisiae PE-2, a predominant bioethanol strain in Brazil. The assembled genomes of H3 and H4, together with 42 draft genomes of sugarcane-fermenting (fuel ethanol plus cachaça) strains, were compared against those of the reference S288C and diverse S. cerevisiae. All genomes of bioethanol yeasts have amplified SNO2(3)/SNZ2(3) gene clusters for vitamin B1/B6 biosynthesis, and display ubiquitous presence of a particular family of SAM-dependent methyl transferases, rare in S. cerevisiae. Widespread amplifications of quinone oxidoreductases YCR102C/YLR460C/YNL134C, and the structural or punctual variations among aquaporins and components of the iron homeostasis system, likely represent adaptations to industrial fermentation. Interesting is the pervasive presence among the bioethanol/cachaça strains of a five-gene cluster (Region B) that is a known phylogenetic signature of European wine yeasts. Combining genomes of H3, H4, and 195 yeast strains, we comprehensively assessed whole-genome phylogeny of these taxa using an alignment-free approach. The 197-genome phylogeny substantiates that bioethanol yeasts are monophyletic and closely related to the cachaça and wine strains. Our results support the hypothesis that biofuel-producing yeasts in Brazil may have been co-opted from a pool of yeasts that were pre-adapted to alcoholic fermentation of sugarcane for the distillation of cachaça spirit, which historically is a much older industry than the large-scale fuel ethanol production.

2.
J Microbiol Methods ; 178: 106085, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33068679

RESUMO

The determination of ethanol in fermented substrates is an important parameter for monitoring the production of distilled beverage samples. The correct measurement of its content has a direct impact on the profitability of the process. In this work, a diffusive micro-distillation device (DMDD) is proposed that allows the determination of ethanol directly in the fermented or distilled beverages samples. The DMDD consists of a 5 mL plastic test tube containing a reagent solution of potassium dichromate and sulfuric acid, inserted into another 50 mL polyethylene tube containing the sample. This set is heated in a water bath for 15 min at 80 °C, providing the ethanol diffusion, which reacts with the receptor solution contained in the test tube. The chromium (III) produced by the oxidation reaction, is spectrophotometrically quantified at 589 nm. The proposed procedure has a linear range between 1 and 12% (v/v) with R2 = 0.999 and RSD = 3.8% and results in agreement with those obtained by the distillation-densitometry official method.

3.
Antonie Van Leeuwenhoek ; 110(7): 971-983, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28470565

RESUMO

Although first-generation fuel ethanol is produced in Brazil from sugarcane-based raw materials with high efficiency, there is still little knowledge about the microbiology, the biochemistry and the molecular mechanisms prevalent in the non-aseptic fermentation environment. Learning-by-doing has hitherto been the strategy to improve the process so far, with further improvements requiring breakthrough technologies. Performing experiments at an industrial scale are often expensive, complicated to set up and difficult to reproduce. Thus, developing an appropriate scaled down system for this process has become a necessity. In this paper, we present the design and demonstration of a simple and effective laboratory-scale system mimicking the industrial process used for first generation (1G) fuel ethanol production in the Brazilian sugarcane mills. We benchmarked this system via the superior phenotype of the Saccharomyces cerevisiae PE-2 strain, compared to other strains from the same species: S288c, baker's yeast, and CEN.PK113-7D. We trust that such a system can be easily implemented in different laboratories worldwide, and will allow a better understanding of the S. cerevisiae strains that can persist and dominate in this industrial, non-aseptic and peculiar environment.


Assuntos
Etanol/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/metabolismo , Brasil , Fermentação
4.
Antonie Van Leeuwenhoek ; 105(1): 169-77, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198118

RESUMO

Bacterial contamination during industrial yeast fermentation has serious economic consequences for fuel ethanol producers. In addition to deviating carbon away from ethanol formation, bacterial cells and their metabolites often have a detrimental effect on yeast fermentative performance. The bacterial contaminants are commonly lactic acid bacteria (LAB), comprising both homo- and heterofermentative strains. We have studied the effects of these two different types of bacteria upon yeast fermentative performance, particularly in connection with sugarcane-based fuel ethanol fermentation process. Homofermentative Lactobacillus plantarum was found to be more detrimental to an industrial yeast strain (Saccharomyces cerevisiae CAT-1), when compared with heterofermentative Lactobacillus fermentum, in terms of reduced yeast viability and ethanol formation, presumably due to the higher titres of lactic acid in the growth medium. These effects were only noticed when bacteria and yeast were inoculated in equal cell numbers. However, when simulating industrial fuel ethanol conditions, as conducted in Brazil where high yeast cell densities and short fermentation time prevail, the heterofermentative strain was more deleterious than the homofermentative type, causing lower ethanol yield and out competing yeast cells during cell recycle. Yeast overproduction of glycerol was noticed only in the presence of the heterofermentative bacterium. Since the heterofermentative bacterium was shown to be more deleterious to yeast cells than the homofermentative strain, we believe our findings could stimulate the search for more strain-specific antimicrobial agents to treat bacterial contaminations during industrial ethanol fermentation.


Assuntos
Etanol/metabolismo , Lactobacillus/isolamento & purificação , Saccharomyces cerevisiae/metabolismo , Saccharum/microbiologia , Brasil , Fermentação , Microbiologia Industrial , Ácido Láctico/metabolismo , Lactobacillus/genética , Lactobacillus/crescimento & desenvolvimento , Lactobacillus/metabolismo , Saccharum/metabolismo
5.
Antonie Van Leeuwenhoek ; 105(3): 481-9, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24370978

RESUMO

The yeast Dekkera bruxellensis is considered to be very well adapted to industrial environments, in Brazil, USA, Canada and European Countries, when different substrates are used in alcoholic fermentations. Our previous study described its fermentative profile with a sugarcane juice substrate. In this study, we have extended its physiological evaluation to fermentation situations by using sugarcane molasses as a substrate to replicate industrial working conditions. The results have confirmed the previous reports of the low capacity of D. bruxellensis cells to assimilate sucrose, which seems to be the main factor that can cause a bottleneck in its use as fermentative yeast. Furthermore, the cells of D. bruxellensis showed a tendency to deviate most of sugar available for biomass and organic acids (lactic and acetic) compared with Saccharomyces cerevisiae, when calculated on the basis of their respective yields. As well as this, the acetate production from molasses medium by both yeasts was in marked contrast with the previous data on sugarcane juice. Glycerol and ethanol production by D. bruxellensis cells achieved levels of 33 and 53 % of the S. cerevisiae, respectively. However, the ethanol yield was similar for both yeasts. It is worth noting that this yeast did not accumulate trehalose when the intracellular glycogen content was 30 % lower than in S. cerevisiae. The lack of trehalose did not affect yeast viability under fermentation conditions. Thus, the adaptive success of D. bruxellensis under industrial fermentation conditions seems to be unrelated to the production of these reserve carbohydrates.


Assuntos
Carboidratos/biossíntese , Dekkera/metabolismo , Fermentação , Melaço , Saccharum/metabolismo , Microbiologia Industrial , Cinética , Saccharomyces cerevisiae/metabolismo
6.
Appl Microbiol Biotechnol ; 97(3): 979-91, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23271669

RESUMO

The production of fuel ethanol from sugarcane-based raw materials in Brazil is a successful example of a large-scale bioprocess that delivers an advanced biofuel at competitive prices and low environmental impact. Two to three fed-batch fermentations per day, with acid treatment of the yeast cream between consecutive cycles, during 6-8 months of uninterrupted production in a nonaseptic environment are some of the features that make the Brazilian process quite peculiar. Along the past decades, some wild Saccharomyces cerevisiae strains were isolated, identified, characterized, and eventually, reintroduced into the process, enabling us to build up knowledge on these organisms. This information, combined with physiological studies in the laboratory and, more recently, genome sequencing data, has allowed us to start clarifying why and how these strains behave differently from the better known laboratory, wine, beer, and baker's strains. All these issues are covered in this minireview, which also presents a brief discussion on future directions in the field and on the perspectives of introducing genetically modified strains in this industrial process.


Assuntos
Etanol/metabolismo , Microbiologia Industrial , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharum/metabolismo , Cerveja , Biocombustíveis , Brasil , Vinho
7.
Biol Trace Elem Res ; 145(1): 71-80, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21809054

RESUMO

Most of the metals released from industrial activity, among them are cadmium (Cd) and nickel (Ni), inhibit the productivity of cultures and affect microbial metabolism. In this context, the aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Cd and Ni on cell growth, viability, budding rate and trehalose content of Saccharomyces cerevisiae, likely because of adsorption and chelating action. For this purpose, the yeast was grown batch-wise in YED medium supplemented with selected amounts of vinasse and Cd or Ni. The negative effects of Cd and Ni on S. cerevisiae growth and the mitigating one of sugar cane vinasse were quantified by an exponential model. Without vinasse, the addition of increasing levels of Cd and Ni reduced the specific growth rate, whereas in its presence no reduction was observed. Consistently with the well-proved toxicity of both metals, cell viability and budding rate progressively decreased with increasing their concentration, but in the presence of vinasse the situation was remarkably improved. The trehalose content of S. cerevisiae cells followed the same qualitative behavior as cell viability, even though the negative effect of both metals on this parameter was stronger. These results demonstrate the ability of sugar cane vinasse to mitigate the toxic effects of Cd and Ni.


Assuntos
Cádmio/toxicidade , Níquel/toxicidade , Preparações de Plantas/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharum/química , Relação Dose-Resposta a Droga , Fermentação , Cinética , Melaço , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Trealose/metabolismo
8.
Arch Environ Contam Toxicol ; 57(3): 488-94, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19184166

RESUMO

Owing to its toxicity, aluminum (Al), which is one of the most abundant metals, inhibits the productivity of many cultures and affects the microbial metabolism. The aim of this work was to investigate the capacity of sugar cane vinasse to mitigate the adverse effects of Al on cell growth, viability, and budding, as the likely result of possible chelating action. For this purpose, Fleischmann's yeast (Saccharomyces cerevisiae) was used in growth tests performed in 125-mL Erlenmeyer flasks containing 30 mL of YED medium (5.0 g/L yeast extract plus 20 g/L glucose) supplemented with the selected amounts of either vinasse or Al in the form of AlCl(3) . H(2)O. Without vinasse, the addition of increasing levels of Al up to 54 mg/L reduced the specific growth rate by 18%, whereas no significant reduction was observed in its presence. The toxic effect of Al on S. cerevisiae growth and the mitigating effect of sugar cane vinasse were quantified by the exponential model of Ciftci et al. (Biotechnol Bioeng 25:2007-2023, 1983). The cell viability decreased from 97.7% at the start to 84.0% at the end of runs without vinasse and to 92.3% with vinasse. On the other hand, the cell budding increased from 7.62% at the start to 8.84% at the end of runs without vinasse and to 17.8% with vinasse. These results demonstrate the ability of this raw material to stimulate cell growth and mitigate the toxic effect of Al.


Assuntos
Compostos de Alumínio/toxicidade , Cloretos/toxicidade , Poluentes Ambientais/toxicidade , Melaço , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharum/química , Cloreto de Alumínio , Fermentação , Resíduos Industriais , Saccharomyces cerevisiae/crescimento & desenvolvimento , Testes de Toxicidade/métodos
9.
Ciênc. agrotec., (Impr.) ; 32(2): 503-509, mar.-abr. 2008. graf, tab
Artigo em Português | LILACS | ID: lil-483354

RESUMO

Avaliaram-se no presente trabalho, as produções de etanol e dos ácidos acético e lático, bem como das proporções dos isômeros óticos D(-) e L(+) desse último, por 17 linhagens de Lactobacillus isoladas de fermentações industriais de produção de etanol. As linhagens foram crescidas a 32ºC por 24 horas, em meio contendo 1 por cento de glucose, 1 por cento de frutose, 1 por cento de extrato de levedura, sais nutrientes (K, Mg e Mn) e tampão fosfato. Foram estimados os teores de ácido lático, ácido acético e etanol mediante cromatografia líquida de alta eficiência, assim como dos isômeros óticos D(-) e L(+) do ácido lático mediante espectrofotometria ao ultra-violeta, empregando desidrogenases láticas estereoespecíficas. O crescimento bacteriano foi inferido pela absorvância a 600 nm. Os resultados obtidos mostraram, pelos perfis de excreção dos metabólitos, a presença de 8 linhagens homofermentativas obrigatórias (produzindo unicamente ácido lático), 8 linhagens heterofermentativas obrigatórias (com produções de ácidos lático, acético e etanol) e 1 linhagem supostamente heterofermentativa facultativa. Observou-se também, em relação à formação dos estereoisômeros, que 12 linhagens foram incluídas no grupo DL, 4 no grupo L e 1 no grupo D. Os resultados permitem concluir que os Lactobacillus que contaminam processos fermentativos industriais de produção de etanol, podem se apresentar nos 3 biotipos fermentativos e produzindo as mais variadas proporções dos dois estereoisômeros do ácido lático, com relevantes implicações biotecnológicas. Este é o primeiro relato sobre as produções dos isômeros óticos do ácido lático por bactérias do gênero Lactobacillus isoladas de fermentações industriais baseadas na cana-de-açúcar.


The aim of the present work was to evaluate the metabolism type of 17 Lactobacillus strains isolated from industrial ethanol fermentation plants. The strains were grown at 32°C for 24 hours on a mixture of equal amounts of glucose and fructose as the carbon source, and supplemented with yeast extract, mineral nutrients and buffer. Bacterial growth was estimated by absorbance at 600nm and the main end products of bacterial metabolism (lactate, acetate and ethanol) were measured by high performance liquid chromatography, while the stereoisomers, D(-)- and L(+)-lactate, were assayed by an enzymatic methodology using stereospecific lactate-dehydrogenases. According to the results, all the three types of metabolism were found among the bacteria investigated: obligately homofermentative (8 strains), facultative heterofermentative (1 strain) and obligately heterofermentative (8 strains). The results have showed a predominance of DL strains regarding the stereoisomers production, but it was also found strains producing a single type of the isomeric form. These findings suggest the possibility to explore the lactobacilli biodiversity in fuel ethanol fermentation plants for lactate production of chemically pure optical isomers. This is the first report on lactic acid isomers formation by Lactobacillus strains isolated from sugar cane based-industrial fermentations.

10.
Braz. j. microbiol ; 34(3)July-Sept. 2003. tab, graf
Artigo em Inglês | LILACS | ID: lil-363929

RESUMO

A fermentacão dos carboidratos de reserva, glicogênio e trealose é um procedimento para aumentar o nível de proteína das células de leveduras com simultâneo aumento na producão de etanol. Este trabalho estudou a cinética de degradacão do glicogênio e trealose em duas linhagens industriais de Saccharomyces cerevisiae (PE-2 e SA-1), bem como o efeito de diferentes temperaturas (38º, 40º, 42º e 44ºC) na velocidade de degradacão. A fermentacão endógena foi conduzida com suspensão de leveduras a 20 per center (m/v) em massa úmida, no vinho com 3 a 4,5 per center (v/v) de etanol. A degradacão dos carboidratos de reserva, a 40ºC, seguiu uma cinética de primeira ordem, mostrando que sua taxa é dependente da concentracão dos carboidratos na célula. A taxa especifica de degradacão (k) variou de 0,0387 a 0,0746 h-1. Em relacão a outros parâmetros analisados a 40ºC, foi observado que a viabilidade e biomassa seca e úmida foram reduzidas, enquanto a reserva de proteína celular e etanol, glicerol e nitrogênio no meio aumentaram. A degradacão do glicogênio e trealose em diferentes temperaturas (38ºC, 40ºC, 42ºC e 44ºC) mostrou que a 38ºC a taxa de degradacão foi a menor, ao passo que a partir de 42ºC ou superior, a degradacão do glicogênio não mais progrediu após poucas horas de incubacão. Portanto, do ponto de vista prático, a melhor temperatura de incubacão é em torno de 40ºC. A aplicacão da equacão de Arrheniusmostrou que as energias de ativacão de 40ºC a 42ºC foram 165,90 e 107,94 kcal.ºK-1.mol-1 para trealose e glicogênio respectivamente para a linhagem PE-2, e 190,64 e 149,87 kcal.ºK-1/mol-1, para a linhagem SA-1 respectivamente.


Assuntos
Glicogênio/metabolismo , Saccharomyces cerevisiae , Trealose , Análise de Variância , Fermentação , Glicogênio/análise , Temperatura , Trealose
11.
Rev. microbiol ; 16(2): 121-6, abr.-jun. 1985.
Artigo em Português | LILACS | ID: lil-30258

RESUMO

Isolados de Diplodia maydis, obtidos de milho, apresentaram diversos graus de nefrotoxidez, para ratos. Tal toxidez mostrou estreita relaçäo com seis compostos fluorescentes, com diferentes Rfs, especialmente o composto com Rf 0.31, cujo comportamento foi muito semelhante à diplodia toxina. Foram feitas análises anátomo-patológicas, hematológicas e determinaçäo do ganho ou perda de peso


Assuntos
Ratos , Animais , Toxinas Biológicas/toxicidade , Fungos/análise , Peso Corporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...